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EFFECT OF SCATTERING ON THE CONTOUR OF
THE RADIATION LINE OF A PLANE LAYER OF A
SELECTIVE MEDIUM

M. L. German, D. Lempert, UDC 536.34:535.36
V. P. Nekrasov, E. F. Nogotov, and
S. Rozin

An analytical expression for determination of the correction factor which allows for effect of scattering on
the contour of the radiation line of a plane layer of a selective medium is presented. Errors of calculation
of the intensity of radiation which arise when this effect is neglected are analyzed. The study is based on a
numerical solution of the integro-differential transfer equation.

The rapid development of technology, the continuously expanding use of high-temperature technigues, the
increase in the power of energy units, and the new engineering possibilities of remote, nondestructive testing of
technical and natural media pose new, stricter requirements on the rate and accuracy of calculation of characteristics
of radiation transfer in absorbing, radiating, and scattering media; this makes it necessary to more correctly allow
for such factors as the selectivity of a gas medium, the multiplicity of the processes of radiation scattering, etc. The
latter presupposes further study of this problem.

In the presence of macroscopic particles, the radiation of a selective gas medium can change drastically due
to natural radiation and an increase in total optical thickness. This fact leads to difficulties associated with,
localization of the volume of observation. If the number of particles in the medium is rather large, the effect of
scattering can be considerable even in the absence of external radiation. Therefore, account for scattering of
radiation in diagnostics of a selectively radiating gas with a condensed disperse phase is a rather complex problem.

The solution of the integro-differential equation of radiation transfer, which forms the basis of theoretical
studies of these problems, is associated, even in the case of a "grey” gas, with certain mathematical difficulties,
especially for multidimensional geometry and a nonisothermal medium. The introduction of integration with respect
to frequency makes this problem virtually unsoluble.

However, it is necessary to allow for the effect of scattering processes on the shape of the line, because in
a number of cases it could be very substantial. Scattering of radiation on particles of a condensed phase can decrease
or increase the emerging radiation. It is shown in [1] that the optical properties of the particles play determining
role.

If we pass from integration with respect to frequency to integration with respect to the coefficient of
absorption, having determined the distribution function of it, then for some models of gas lines we are able to
integrate the equation of radiation transfer [2, 3}. Here, in fact, we need only one integration with respect to the
coefficient of absorption instead of integration with respect to many lines. The distribution function of the coefficient
of absorption for the Malkmus and Goody models was obtained in [2]. But its use for direct iniegration of the
equation of transfer is difficult, due to some of its special features and the impossibility of tracing changes in the
contour of the line in the presence of scattering.

The problem of transfer of selective radiation in the presence of a condensed phase in MHD generators
was solved by the Sobolev method in [4-6]. The increase in intensity on the wings of lines under the effect of the
processes of scattering on solid particles is shown by the examples of the lines of cesium and sodium.
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In {7] a method of averaging over the spectrum of lines and molecular bands with account for scattering
in a nonuniform medium for the H,O band (40144018 cm) is suggested, and it is shown that calculation for "grey"
radiation can increase errors by up to 2009 A solution of the equation of transfer was obtained in a two-flow
approximation, which itself gives large errors in calcnlation of the characteristics of transfer and, consequently, is
of little use for these studies.

On the basis of a two-flow solution of the equation of an exponential model for molecunlar bands with use
of the distribution function of the coefficient of absorption from [2], a relatively simple expression for hemispherical
emissivity of a plane line is obtained in [8]. The emissivity of the layer as a function of the optical thickness of
the layer is analyzed in the same paper. However, due to insufficient accuracy of the equation of transfer, this
analysis gives a qualitative rather than a quantitative estimate.

The effect of scattering in a real molecular gas is analyzed in [8, 9] using the example of a Doppler line.
It is shown that hemispherical emissivity with account for scattering can increase by 32%,, depending on the optical
thickness of the gas and the probability of quantum survival. In the same works it was found that at an optical
thickness of the gas equal to 0.1031 and an optical thickness of the particles with respect to scattering of 0.6510,
the radiation of a plane layer with particles is greater that of a layer of a pure gas.

The fact that scattering of radiation on particles of a solid phase leads to large errors in measurements of
the temperature of hot gases is confirmed experimentally in [10]. At a small optical thickness, 0.1 < v < 0.5, the
error of gas-temperature measurement can reach 100 K.

In all the works mentioned, different models of bands and different methods of solving the equation of
radiation transfer of varying accuracy are used. An analysis of the literature showed that so far there are no studies
in which a thorough systematic analysis of the effect of the optical properties of the particles on the contour of lines
within a wide rage of variation of the parameters of the particles ~ force, half-width, and distance between them
- was made. The authors are familiar with only one paper of a methodological character {9 ] where an attempt was
made to qualitatively analyze different experimental data on estimation of the effect of particles on radiation of a
high-temperature gas component. All this stimulated the authors to study the problem mentioned.

The effect of processes of scattering of radiation on particles of a solid phase in a plane layer of a selectively
emitting and absorbing gas was analyzed in [11 ] in detail. This paper deals with the main laws governing the effect
of scattering on the contour of the line of emerging radiation. To describe the selective properties of the gas, we
used the Elsasser model with the Lorentz contour of the line [1]. The scattering properties of the particles are
taken into account by introduction of the Schuster parameter Sc = ¢/ (o + s/d). Propagation of radiation in a plane
layer with transparent boundaries and uniform distribution of sources is studied on the basis of an analysis of the
results of a numerical solution of the integro-differential equation of transfer, the method of solution of which is
given in [12]. The error of solution of the equation did not exceed 0.001%. It is shown by direct numerical
integration of the equation of transfer of radiation over the contour of the line within —d/2 and d/2 that the
processes of scattering on particles deform the contour of the spectral line of emerging radiation. The character of
this effect greatly depends on the parameters of the fine structure of the line — its half-width, force, and the
Schuster number. An analysis of the obtained results indicates that the mean optical thickness over the contour of
the line with account for scattering can be presented in the form

1 (y/d, s/d, Sc, L) = 1§ (v/d, 1) 9 (v/d, 79, Sc) , (1)

where Tg = Ls/d, and £ and ¥ are correction factors for selectivity and scattering of radiation in the medium,
respectively. This representation of the mean (or equivalent) optical thickness makes it possible to avoid integration
with respect to the contour of the line and to obtain simple expressions for practical calculations of the characteristics
of radiation of selective gases with account for scattering in finite spectral ranges.

The formula of the correction factor £(y/d, 7,), which makes it possible to allow for the effect of the
parameters of the fine structure of the lines within a wide range of a change in the parameters is given in {11}
Below we present an analytical expression of the correction factor #(y/d, 7, Sc) for accounting for the effect of
scattering on the contour of the line of radiation emerging from a layer of a selectively absorbing, radiating, and
scattering medium and analyze its error.
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TABLE 1, Correction Factor #(y/d, 7, Sc) at Different Values of y/d for the Elsasser Band Model

Sc
T
00 [ or | 02 | 03 | 04 [ 05 | 06 | 07 | 08 [ 09
y/d = 0.001
0.01 1.000 | 0.994 | 0.989 | 0983 | 0.978 | 0.973 | 0967 | 0.960 | 0.948 | 0.922
0.015 | 1.000 | 0993 | 0.987 | 0981 | 0975 | 0968 | 0.961 | 0.951 | 0.935 | 0.900
0023 | 1.000 | 0992 | 0984 | 0977 | 0.969 | 0962 | 0952 | 0.939 | 0.918 | 0.873
0.036 | 1.000 | 0.990 | 0.981 | 0972 | 0.963 | 0.954 | 0941 | 0.924 | 0.898 | 0.842
0.055 | 1.000 | 0988 | 0976 | 0966 | 00955 | 0942 | 0926 | 0.904 | 0.870 | 0.809
0.084 | 1.000 | 0984 | 0970 | 0957 | 0943 | 0927 | 0907 | 0.880 | 0.840 | 0.771
0.128 | 1.000 | 0980 | 0963 | 0947 | 0.928 | 0908 | 0882 | 0852 | 0.805 | 0.734
0.197 | 1.000 | 0974 | 0952 | 0930 | 0909 | 0883 | 0855 | 0.820 | 0.771 | 0.698
0.30 1.000 | 0967 | 0939 | 0913 | 0.885 | 0.856 | 0.823 | 0.781 | 0.734 | 0.668
0.46 1.000 | 0.956 | 0.921 | 0.888 | 0.858 | 0.825 | 0.791 | 0.751 | 0.703 | 0.645
0.71 1.000 | 0944 | 0902 | 0.864 | 0.828 | 0.793 | 0.755 | 0.714 | 0.674 | 0.639
1.08 1.000 | 0927 | 0874 | 0832 | 0.796 | 0.759 | 0.722 | 0.689 | 0.659 | 0.661
1.66 1.000 | 0910 | 0849 | 0805 | 0.765 | 0.728 | 0.694 | 0.669 | 0.656 | 0.717
2.54 1.000 | 0886 | 0817 | 0771 | 0.734 | 0.704 | 0.685 | 0.674 | 0.693 | 0.813
3.88 1.000 | 0862 | 0794 | 0.749 | 0.717 | 0.694 | 0.688 | 0.700 | 0.767 | 0.983
5.95 1.000 | 0.837 | 0.762 | 0.729 | 0.710 | 0.707 | 0.718 | 0.770 | 0.889 | 1.129
9.10 1.000 | 0825 | 0757 | 0.736 | 0.736 | 0.757 | 0.807 | 0.909 | 1.073 | 1.235
1394 | 1.000 | 0.806 | 0.764 | 0.767 | 0.802 | 0.855 | 0942 | 1.074 | 1.221 1.335
21.33 | 1.000 | 0.800 | 0.794 | 0.837 | 0.916 | 1.011 | 1.138 | 1.245 | 1.337 | 1.407
3266 | 1.000 | 0834 | 0.890 | 0969 | 1.092 | 1.218 | 1.316 | 1.411 | 1.482 | 1.487
50.00 | 1.000 | 0916 | 1.044 | 1.160 | 1.300 | 1.409 | 1.504 | 1.594 | 1.635 | 1.635
y/d = 0.01
0.01 1.000 | 0.998 | 0995 | 0991 | 0988 | 0984 | 0981 | 0977 | 0972 | 0.962
0.015 | 1.000 | 0997 | 0994 | 0990 | 0.986 | 0.981 | 0976 | 0.970 | 0.960 | 0.946
0.023 | 1.000 | 0997 | 0993 | 0988 | 0.983 | 0.977 | 0.970 | 0.962 | 0.948 | 0.922
0.036 | 1.000 | 0996 | 0991 | 0984 | 0978 | 0970 | 0.960 | 0.947 | 0.928 | 0.892
0.055 | 1.000 | 0995 | 0.987 | 0979 | 0.970 | 0.960 | 0946 | 0.928 | 0.901 | 0.852
0.084 | 1.000 | 0993 | 0983 | 0972 | 0.960 | 0945 | 0927 | 0.902 | 0.870 | 0.806
0.128 | 1.000 | 0.990 | 0.977 | 0963 | 0.946 | 00928 | 0905 | 0876 | 0.835 | 0.763
0.197 | 1.000 | 098 | 0969 | 0950 | 0.929 | 0.908 | 0879 | 0.845 | 0.798 | 0.727
0.30 1.000 | 0982 | 0960 | 0936 | 00913 | 0883 | 0851 | 0815 | 0.765 | 0.706
0.46 1.000 | 0.975 | 00947 | 0921 | 0.890 | 0.859 | 0.825 | 0.784 | 0.742 | 0.693
0.71 1.000 | 0968 | 0933 | 0899 | 0.867 | 0.834 | 0800 | 0.765 | 0.727 | 0.710
1.08 1.000 | 0960 | 0.919 | 0.880 | 0.844 | 0813 | 0.779 | 0.752 | 0.734 | 0.763
1.66 1.000 | 0950 | 00906 | 0866 | 0.831 | 0.798 | 0.772 | 0.758 | 0.769 | 0.871
2.54 1.000 | 0943 | 0885 | 0852 | 0824 | 0804 | 0.797 | 0.821 | 0.887 | 1.031
3.88 1.000 | 0.938 | 0.887 | 0852 | 0.835 | 0.839 | 0.858 | 0917 | 1015 | 1.242
5.95 1.000 | 0931 | 0894 | 088 | 0891 | 0922 | 0998 | 1.101 | 1.243 | 1.430
9.10 1.000 | 0945 | 0934 | 0959 | 1.010 | 1.091 | 1.185 | 1.313 | 1.458 | 1.653
1394 | 1.000 | 0969 | 1.023 | 1.100 | 1.187 | 1.282 | 1.377 | 1.491 | 1.659 | 1.871
2133 | 1.000 | 1.058 | 1.193 | 1.317 | 1.419 | 1.489 | 1.602 | 1.743 | 1.894 | 2.088
3266 | 1.000 | 1.205 | 1.340 | 1.468 | 1.581 | 1.713 | 1.845 | 1.996 | 2.153 | 2.268
50,00 | 1.000 | 1390 | 1.552 | 1678 | 1.777 | 1.883 | 2023 | 2165 | 2291 | 2.422
y/d = 0.1
0.01 1.000 | 1.000 | 0.999 | 0998 | 0.998 | 0997 | 0996 | 0.996 | 0.996 | 0.996
0.015 | 1.000 | 1.000 | 0999 | 0998 | 0.997 | 0996 | 0996 | 0995 | 0.994 | 0.994
0023 | 1.000 | 1.000 | 0.999 | 0998 | 0.997 | 0.996 | 0.995 | 0.994 | 0.993 | 0.991
0.036 | 1.000 | 1.000 | 0999 | 0997 | 0.996 | 0995 | 0.993 | 0.992 | 0.989 | 0.987
0.055 | 1.000 | 0999 | 0.998 | 0997 | 0.995 | 0.993 | 0.990 | 0.988 | 0.983 | 0.978
0.084 | 1.000 | 0999 | 0997 | 0995 | 0992 | 0989 | 0986 | 0982 | 0976 | 0.963
0.128 | 1.000 | 0998 | 0996 | 0992 | 0.988 | 0.984 | 0979 | 0.971 | 0.961 | 0.946
0.197 | 1.000 | 0997 | 0993 | 0989 | 0.983 | 0.977 | 0967 | 0.957 | 0.944 | 0917
0.30 1.000 | 0996 | 00991 | 0984 | 0976 | 0.966 | 0.954 | 0.937 | 0.917 | 0.889
0.46 1.000 | 0994 | 0087 | 0977 | 0966 | 0955 | 0.940 | 0.919 | 0.896 | 0.874
0.71 1.000 | 0993 | 0083 | 0973 | 0959 | 0942 | 0.926 | 0908 | 0.888 | 0.895
1.08 1.000 | 0993 | 0081 | 0968 | 0953 | 0941 | 0926 | 0913 | 0.921 | 0.967
1.66 1.000 | 0994 | 00985 | 0975 | 0965 | 0.956 | 0.956 | 0.976 | 1.018 | 1.096
2.54 1.000 | 0997 | 0992 | 0990 | 0.998 | 1.017 | 1.047 | 1.107 | 1.158 | 1.227
3.88 1.000 | 1.008 | 1.023 | 1.048 | 1.088 | 1.141 | 1209 | 1249 | 1297 | 1.378
5.95 1.000 | 1.038 | 1.109 | 1.181 | 1.235 | 1288 | 1.343 | 1.390 | 1.444 | 1.531
9.10 1.000 | 1.142 | 1275 | 1355 | 1.381 | 1.414 | 1.464 | 1520 | 1.578 | 1.690
13.94 | 1.000 | 1.365 | 1.435 | 1477 | 1.497 | 1.533 | 1.585 | 1.641 | 1725 | 1.846
2133 | 1.000 | 1496 | 1.527 | 1.566 | 1.600 | 1.629 | 1.680 | 1.736 | 1.814 | 1.927
3266 | 1.000 | 1.543 | 1.572 | 1.607 | 1.636 | 1.670 | 1.712 | 1.758 | 1.825 | 1.878
5000 | 1000 | 1535 | 1.554 | 1.576 | 1.598 | 1.624 | 1.646 | 1.671 | 1.696 | 1.728
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Fig. 1. Distribution of correction factor (a) and errors of calculation of
intensity of radiation arising in integration of it (b) at y/d = 0.001 (e, =
0334 = D;y/d=0.01 (¢, =0402 — ID;y/d=0.1 (¢, =0.251 — IID.

max max

As in the case of the study of radiation of a selective gas medium, we introduce into consideration the
relative error of calculation of the intensity of radiation which arises if the effect of scattering processes on the line
contour-mean coefficient of absorption of the selective component (# = 1) is disregarded

e=1-I@V/I@=1). (2)

The values of the correction factor 3(y/ d, , Sc) and the error of calculation of the intensity of radiation
arising in integration of it, which are obtained as a result of direct numerical integration of the integro-differential
equation of transfer with respect to the contour of the line from —d/2 to d/2 within a wide range of variation of
radiative and scattering properties of the gas medium, are presented in Table 1 and illustrated by Fig. 1. An analysis
of this data shows that

a) the correction factor 9(y/d , T, Sc) changes within the range of from 0.6 to 2.5, thus causing variation
of the line contour-mean coefficient of absorption of the selective components;
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b) neglect of the effect of scattering processes on the line contour-mean coefficient of absorption of the
selective component leads to errors of about 409, in calculation of the intensity of radiation. With an increase in
the parameter Sc and an increase in 7, this error grows. This is due to the fact that at large 7 the processes of
scattering facilitate the "manifestation” of the contour of emerging radiation compared to a nonscattering medium,
in which the contour of the line is virtually absent (i.e., the selective component behaves as a "grey" medium).

The simplest and the most accurate method for determining the correction factor #(y/d, 7, Sc) is
interpolation of its exact numerical values. However, for practical calculations it is convenient to have some relatively
simple interpolation formula to evaluate the correction factor ?(y/d, 7, Sc) quickly and without storage of additional
information.

An analysis of the numerical values of the correction factor and the errors of calculation which arise when
the effect of scattering processes on the line contour-mean coefficient of absorption of the selective component is
neglected (see Fig. 1) made it possible to suggest the following formula for the correction factor

9 [1+00474 (B +37)Sc/(1.48 - So) B < 1.9Sc,
=11 - 0.062548 + (0.862 — 0.429 |B + 2|) (B + 1.89Sc), B > 1.9Sc, 3

B =log (t/50), A =log(0.5v/d).

In the ranges 0.01 < 7 < 50 and 0.001 < v/d < 0.5, the given formula ensures calculation of the intensity of
radiation with an error not larger than 12.5%,. In this case, the maximum error € max () arising when the accurate
values of 9(y/d, 7, Sc) are replaced by those calculated by formula (2) decreases as y/d increases. Even for
y/d > 0.04 it becomes less than 109,. The structure of the error distribution £(r,Sc¢) is given in Fig. | for y/d €
(0.001, 0.01, 0.1).

It should be noted that for narrower ranges of variation of y/d and 7, more accurate formulas can be
selected for the value of the correction factor 9 (y/d, 1, Sc), but, in the opinion of thc authors, in these cases it is
expedient to use the values of the correction factor obtained by interpolation of accurate data given in Table 1.

NOTATION

%, o, coefficients of absorption and scattering of medium; Sc, Schuster criterion; T = yL, optical thickness
of layer with respect to absorption; L, geometrical thickness of layer; s, strength of absorption line; y, half-width
of absorption line; d, distance between lines.
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